<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">






<!--[if gte mso 9]><xml>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves>false</w:TrackMoves>
  <w:TrackFormatting/>
  <w:PunctuationKerning/>
  <w:DrawingGridHorizontalSpacing>18 pt</w:DrawingGridHorizontalSpacing>
  <w:DrawingGridVerticalSpacing>18 pt</w:DrawingGridVerticalSpacing>
  <w:DisplayHorizontalDrawingGridEvery>0</w:DisplayHorizontalDrawingGridEvery>
  <w:DisplayVerticalDrawingGridEvery>0</w:DisplayVerticalDrawingGridEvery>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:DontGrowAutofit/>
   <w:DontAutofitConstrainedTables/>
   <w:DontVertAlignInTxbx/>
  </w:Compatibility>
 </w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" LatentStyleCount="276">
 </w:LatentStyles>
</xml><![endif]-->

<!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
        {mso-style-name:"Table Normal";
        mso-tstyle-rowband-size:0;
        mso-tstyle-colband-size:0;
        mso-style-noshow:yes;
        mso-style-parent:"";
        mso-padding-alt:0in 5.4pt 0in 5.4pt;
        mso-para-margin:0in;
        mso-para-margin-bottom:.0001pt;
        mso-pagination:widow-orphan;
        font-size:12.0pt;
        font-family:"Times New Roman";
        mso-ascii-font-family:Cambria;
        mso-ascii-theme-font:minor-latin;
        mso-hansi-font-family:Cambria;
        mso-hansi-theme-font:minor-latin;}
</style>
<![endif]-->



<!--StartFragment--><p class="MsoNormal"><span style="font-size: 14px;" class=""><font face="Verdana" class=""><i class="">Nature
Communications</i> Published online:18 April 2017<o:p class=""></o:p></font></span></p><p class="MsoNormal"><span style="font-size: 14px;" class=""><font face="Verdana" class=""> Large
near-term projected snowpack loss over the western United States</font></span></p><div style="margin: 0.1pt 0in;" class=""><span style="font-size: 14px;" class=""><font face="Verdana" class="">John C. Fyfe et al<o:p class=""></o:p></font></span></div><div style="margin: 0.1pt 0in;" class=""><span style="font-size: 14px;" class=""><font face="Verdana" class=""> </font></span></div><div style="margin: 0.1pt 0in;" class=""><span style="font-size: 14px;" class=""><font face="Verdana" class="">*****************************.  pull quote   **********************************<o:p class=""></o:p></font></span></div><p class="MsoNormal" style="background:white"><span style="font-size: 14px;" class=""><font face="Verdana" class=""><b class=""><span style="letter-spacing: 0.15pt;" class="">“</span></b><span style="letter-spacing: 0.15pt;" class="">In this study, we
show that losses in regional snowpack over the past few decades are consistent
with natural and anthropogenic changes, but are inconsistent with natural
changes alone. We predict an additional loss of snowpack water storage of up to
60% within the next three decades due to combined influences from anthropogenic
forcing and internal decadal variability.”</span></font></span></p><p class="MsoNormal" style="background:white"><span style="font-family: Verdana; font-size: 14px; letter-spacing: 0.15pt;" class="">**************************</span></p><div style="margin: 0.1pt 0in 0.1pt 0.5in;" class=""><b class=""><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class=""> </font></span></b></div><div style="margin: 0.1pt 0in;" class=""><b class=""><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class="">Abstract [open access]<o:p class=""></o:p></font></span></b></div><div style="margin: 0.1pt 0in;" class=""><b class=""><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class=""><span style="color:windowtext;
text-decoration:none;text-underline:none" class=""><a href="https://www.nature.com/articles/ncomms14996" class="">https://www.nature.com/articles/ncomms14996</a></span><o:p class=""></o:p></font></span></b></div><div style="margin: 0.1pt 0in;" class=""><b class=""><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class=""><br class=""></font></span></b></div><div style="margin: 0.1pt 0in;" class=""><span style="font-size: 14px;" class=""><font face="Verdana" class=""><b class=""><span style="letter-spacing: 0.15pt;" class=""> </span></b><span style="letter-spacing: 0.15pt; background-color: white;" class="">Peak runoff in streams and rivers of the western United
States is strongly influenced by melting of accumulated mountain snowpack. A
significant decline in this resource has a direct connection to streamflow,
with substantial economic and societal impacts. Observations and reanalyses
indicate that between the 1980s and 2000s, there was a 10–20% loss in the
annual maximum amount of water contained in the region’s snowpack. Here we show
that this loss is consistent with results from a large ensemble of climate
simulations forced with natural and anthropogenic changes, but is inconsistent
with simulations forced by natural changes alone. A further loss of up to 60%
is projected within the next 30 years. Uncertainties in loss estimates depend
on the size and the rate of response to continued anthropogenic forcing and the
magnitude and phasing of internal decadal variability. The projected losses
have serious implications for the hydropower, municipal and agricultural
sectors in the region.</span></font></span></div><p class="MsoNormal" style="background:white"><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class=""> </font></span></p><p class="MsoNormal" style="background:white"><b class=""><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class="">Introduction<o:p class=""></o:p></font></span></b></p><p class="MsoNormal" style="margin-left:-452.5pt;mso-outline-level:2;background:
#EEEEEE"><b class=""><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class="">Introduction<o:p class=""></o:p></font></span></b></p><p class="MsoNormal" style="background:white"><span style="font-size: 14px;" class=""><font face="Verdana" class=""><span style="letter-spacing: 0.15pt;" class="">It is well established that the North American continent
is warming</span><sup class=""><span style="letter-spacing: 0.15pt;" class=""><a href="https://www.nature.com/articles/ncomms14996#ref1" class=""><span style="mso-bidi-font-size:12.0pt;color:windowtext;text-decoration:none;
text-underline:none" class="">1</span></a></span></sup><span style="letter-spacing: 0.15pt;" class="">, partly due to increasing emissions of well-mixed
greenhouse gases</span><sup class=""><span style="letter-spacing: 0.15pt;" class=""><a href="https://www.nature.com/articles/ncomms14996#ref2" class=""><span style="mso-bidi-font-size:12.0pt;color:windowtext;text-decoration:none;
text-underline:none" class="">2</span></a></span></sup><span style="letter-spacing: 0.15pt;" class="">. In the winter season, this warming contributed to
snowpack loss over the western United States</span><sup class=""><span style="letter-spacing: 0.15pt;" class=""><a href="https://www.nature.com/articles/ncomms14996#ref3" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">3</span></a>,<a href="https://www.nature.com/articles/ncomms14996#ref4" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">4</span></a>,<a href="https://www.nature.com/articles/ncomms14996#ref5" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">5</span></a>,<a href="https://www.nature.com/articles/ncomms14996#ref6" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">6</span></a></span></sup><span style="letter-spacing: 0.15pt;" class="">. It is also well
known that the region’s climate is substantially influenced by decadal
variability originating in the adjacent Pacific Ocean</span><sup class=""><span style="letter-spacing: 0.15pt;" class=""><a href="https://www.nature.com/articles/ncomms14996#ref7" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">7</span></a></span></sup><span style="letter-spacing: 0.15pt;" class="">. In this study we
employ observations, land surface reanalyses and climate model simulations to
characterize the combined influences of decadal variability and external
forcing on recently observed and near-term projected changes in snowpack over
the western United States.</span></font></span></p><p class="MsoNormal" style="background:white"><span style="font-size: 14px;" class=""><font face="Verdana" class=""><span style="letter-spacing: 0.15pt;" class="">Recognition of the pronounced influence of decadal
variability on regional trends in climate is motivating efforts to generate
large initial condition ensembles of global climate model simulations. These
ensembles provide estimates of the relative contributions of internal variability
and external forcing to regional-scale climate changes</span><sup class=""><span style="letter-spacing: 0.15pt;" class=""><a href="https://www.nature.com/articles/ncomms14996#ref8" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">8</span></a>,<a href="https://www.nature.com/articles/ncomms14996#ref9" class=""><span style="mso-bidi-font-size:
12.0pt;color:windowtext;text-decoration:none;text-underline:none" class="">9</span></a>,<a href="https://www.nature.com/articles/ncomms14996#ref10" class=""><span style="mso-bidi-font-size:12.0pt;color:windowtext;text-decoration:none;
text-underline:none" class="">10</span></a>,<a href="https://www.nature.com/articles/ncomms14996#ref11" class=""><span style="mso-bidi-font-size:12.0pt;color:windowtext;text-decoration:none;
text-underline:none" class="">11</span></a></span></sup><span style="letter-spacing: 0.15pt;" class="">. An initial condition ensemble consists of many
individual simulations performed with a given coupled climate model; each
simulation uses the same external forcing, but is initiated from slightly
different conditions of the atmosphere and/or ocean state. Each ensemble member
has a different realization of internal variability superimposed on the
underlying externally forced response.</span><span style="letter-spacing: 0.15pt;" class=""> </span></font></span></p><p class="MsoNormal" style="background:white"><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class="">Because of their high computational cost, large
(>10-member) ensembles are rare. It is also rare for groups to perform
multiple large ensembles, one consisting of simulations with anthropogenic
forcing only, and one with simulations incorporating solar and volcanic forcing
alone. Here, we generate and analyse 50-member anthropogenic and naturally
forced ensembles. We also rely on a large ensemble of higher-resolution
regional climate model simulations driven with the output from the global
climate model.</font></span></p><p class="MsoNormal" style="background:white"><span style="letter-spacing: 0.15pt; font-size: 14px;" class=""><font face="Verdana" class="">Although several studies have found an anthropogenic
contribution to snowpack loss over the western United States, the combined
influences of decadal variability and external forcing remain poorly quantified
in observations and near-term projections. In this study, we show that losses in
regional snowpack over the past few decades are consistent with natural and
anthropogenic changes, but are inconsistent with natural changes alone. We
predict an additional loss of snowpack water storage of up to 60% within the
next three decades due to combined influences from anthropogenic forcing and
internal decadal variability.<o:p class=""></o:p></font></span></p><p class="MsoNormal" style="background:white"><span style="letter-spacing: 0.20000000298023224px; font-size: 14px;" class=""><font face="Verdana" class="">Complete article here:</font></span></p><p class="MsoNormal" style="background:white"><b class=""><span style="letter-spacing: 0.15pt;" class=""><span style="color: windowtext; font-size: 14px;" class=""><a href="https://www.nature.com/articles/ncomms14996" class=""><font face="Verdana" class="">https://www.nature.com/articles/ncomms14996</font></a></span></span></b></p><div class=""><span style="font-size: 14px;" class=""><font face="Verdana" class=""><br class=""></font></span></div><p class="MsoNormal"><span style="font-size: 14px;" class=""><font face="Verdana" class=""> </font></span></p>

<!--EndFragment--><div class="">
<div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><div style="color: rgb(0, 0, 0); font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px;"><span style="font-size: 14px;" class=""><font face="Verdana" class="">------------------------------------------------------------------------------------------------------------------------------------------------<br class="">"Ignorance of remote causes disposeth men to attribute all events to the causes immediate and instrumental: for these are all the causes they perceive."<br class=""><br class="">Attributed  to Thomas Hobbes<br class="">-------------------------------------------------------------------<br class="">“Making connections is the essence of scientific progress.”<br class=""><br class="">Chris Quigg, “Aesthetic Science,”  Scientific American, April 1999<br class="">----------------------------------------------------------------------------------------------------------------------------------------------<br class="">“Teleconnections can be defined as linkages between climate anomalies at some distance from each other. The large distances in space and the differences in timing between these anomalous events make it difficult for one to believe that one event (El Nino or La Nina) could possibly have influence on the other (e.g. drought in southern Africa or hurricanes in the tropical Atlantic). Nevertheless, physical and statistical research has shown that such linkages do exist.”<br class=""><br class="">Michael Glantz. Currents of Change : Impacts of El Nino and La Nina on Climate and Society. Cambridge University Press, 2001</font></span></div></div>
</div>

<br class=""></body></html>