<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">
                
        
        
                <div class="page" title="Page 1">
                        <div class="layoutArea">
                                <div class="column"><div class="core-date-published" style="box-sizing: border-box; margin: 0px 0px 0px 1.063rem; text-indent: -1.063rem; transform: translateX(-1.063rem); color: rgb(11, 11, 11); font-family: "Open Sans", sans-serif; font-variant-ligatures: normal; orphans: 2; widows: 2; background-color: rgb(255, 255, 255); text-decoration-thickness: initial;"><span property="datePublished" style="box-sizing: border-box;" class="">PNAS.  March 10, 2009</span></div><div class="core-enumeration" style="box-sizing: border-box; margin: 0px 0px 0px 1.063rem; text-indent: -1.063rem; transform: translateX(-1.063rem); color: rgb(11, 11, 11); font-family: "Open Sans", sans-serif; font-variant-ligatures: normal; orphans: 2; widows: 2; background-color: rgb(255, 255, 255); text-decoration-thickness: initial;"><a href="https://doi.org/10.1073/pnas.0808913106" property="sameAs" style="text-indent: -1.063rem; box-sizing: border-box; color: var(--link-color); transition: background 0.15s ease-in-out 0s, color 0.15s ease-in-out 0s;" class="">https://doi.org/10.1073/pnas.0808913106</a></div><p class=""><span style="font-weight: 700;" class="">The potential for behavioral thermoregulation </span><span style="font-weight: 700;" class="">to buffer ‘‘cold-blooded’’ animals against </span><span style="font-weight: 700;" class="">climate warming</span></p><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><span style="font-kerning: none" class=""> Michael Kearney, Richard Shine, and Warren P. Porter</span></div><div style="margin: 0px; font-stretch: normal; line-height: normal; min-height: 17px;" class=""><span style="font-kerning: none" class=""></span><br class=""></div><div style="margin: 0px; font-stretch: normal; line-height: normal;" class=""><span style="font-kerning: none" class="">Increasing concern about the impacts of global warming on biodi- versity has stimulated extensive discussion, but methods to trans- late broad-scale shifts in climate into direct impacts on living animals remain simplistic. A key missing element from models of climatic change impacts on animals is the buffering influence of behavioral thermoregulation. Here, we show how behavioral and mass/energy balance models can be combined with spatial data on climate, topography, and vegetation to predict impacts of in- creased air temperature on thermoregulating ectotherms such as reptiles and insects (a large portion of global biodiversity). We show that for most ‘‘cold-blooded’’ terrestrial animals, the primary thermal challenge is not to attain high body temperatures (although this is important in temperate environments) but to stay cool (particularly in tropical and desert areas, where ectotherm biodiversity is greatest). </span><span style="font-kerning: none; background-color: #ffff0a" class="">The impact of climate warming on thermoregulating ectotherms will depend critically on how changes in vegetation cover alter the availability of shade </span><span style="font-kerning: none" class="">as well as the animals’ capacities to alter their seasonal timing of activity and reproduction. Warmer environments also may increase mainte- nance energy costs while simultaneously constraining activity time, putting pressure on mass and energy budgets. Energy- and mass-balance models provide a general method to integrate the complexity of these direct interactions between organisms and climate into spatial predictions of the impact of climate change on biodiversity. This methodology allows quantitative organism- and habitat-specific</span></div></div></div><div class="layoutArea"><div class="column">
                                </div>
                        </div>
                </div></body></html>